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SUMMARY

An efficient and easy to implement method to generate Cartesian grids is presented. The presented method
generates various kinds of Cartesian grids such as uniform, octree and embedded boundary grids. It
supports the variation of grid size along each spatial direction as well as anisotropic and non-graded
refinements. The efficiency and ease of implementation are the main benefits of the presented method
in contrast to the alternative methods. Regarding octree grid generation, applying a simple and efficient
data compression method permits to store all grid levels without considerable memory overhead. The
presented method generates octree grids up to a 13-level refinement (81923 grids on the finest level)
from a complicated geometry in a few minutes on the traditional desktop computers. The FORTRAN 90
implementation of the presented method is freely available under the terms of the GNU general public
license. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Several numerical methods in the computational mechanics such as finite element method, finite
volume method (FVM) and finite difference method need to subdivide the physical domain into
sub-domains, which is called the spatial computational grid. In recent years, automatic grid gener-
ation is one of the focus areas in the research of computational mechanics and computational
geometry [1].
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The numerical grid generation generally can be classified into body-fitted and non-body-fitted
categories. The body-fitted methods can be divided into structured and unstructured grid generation
methods. Although the structured and unstructured body-fitted methods have been successful in
handling complex geometries, they are usually very time consuming to generate grids for complex
geometries. Furthermore, in the case of complex geometries, these methods do not have enough
robustness to generate a suitable grid, fully automatically without any human effort.

In contrast to the body-fitted structured or unstructured grid generation methods, Cartesian
grids are inherently non-body-fitted; i.e. the volume mesh structure is independent of the surface
discretization and topology. This characteristic greatly simplifies the grid generation procedure and
promotes extensive automation. The Cartesian grids can be divided into three categories: uniform,
octree (quadtree in 2D) and embedded boundary grids.

In the uniform Cartesian grid, the curved boundaries are approximated in a staircase manner.
This limitation might decrease the accuracy or efficiency (since it enforces the use of a fine
grid) of the numerical solution particularly for complex geometries. In spite of this weakness, in
some engineering applications, staircase boundary approximation is reasonable and sufficient. For
example, in the field of computer-aided thermal or structural topology and shape optimization,
several researchers have used the uniform Cartesian grid to discretize the spatial domain [2–10].
Also in some applications the body-fitted and uniform Cartesian grids are applied simultaneously
to balance between the accuracy and efficiency of simulation [11–15].

Recently, the embedded boundary Cartesian approach is proposed to overcome the mentioned
limitation of the uniform Cartesian grid [16–22]. In this approach, the physical domain is embedded
completely within a larger Cartesian grid. The bulk of data underlying an embedded boundary
discretization utilizes rectangular indexing and regular treatment, and only a small number of cells
near the embedded boundary require special treatment.

The tree-based Cartesian grid, i.e. octree (or quadtree in 2D) [23–27] is another treatment to
fade the mentioned limitation of the uniform Cartesian grid. In this approach, the grid resolution is
increased near the high-curvature boundaries. This method is usually combined with the embedded
boundary methods to compete with the body-fitted methods. Note that in this approach, there is
no regular data structure similar to the uniform Cartesian grid, but there are semi-structured data
that are preferable in contrast to the fully unstructured data. In [28] a robust and efficient method
has been proposed to generate octree Cartesian grids over complex geometries. This method
uses sophisticated computational geometry techniques which makes it very difficult to implement
(furthermore, needs deep background in the field of computational geometry).

In the present study, a robust, efficient and easy to implement Cartesian grid generator is
proposed. The presented method generates the uniform grid, octree grid and essential informa-
tion required for embedded boundary finite volume solvers. It supports the variation of grid size
along each spatial direction for either uniform or octree-refined grids. The generation of irreg-
ularly refined (non-graded) grids can be included easily in the presented method. In contrast to
the alternative methods, the ease of implementation is the outstanding feature of the presented
method. This feature greatly simplifies the procedure of further extension and tuning for particular
applications.

The rest of this paper is organized as follows. The required input geometry that is used in the
present study is discussed in Section 2. Section 3 presents the grid generation algorithm. Section 4
is devoted to numerical experiments on the robustness and efficiency of the presented method and
Section 5 summarizes the current study.
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2. INTERFACE WITH CAD

Many CAD packages use boundary representation (BREP) geometries to define solids. With BREP,
the boundary surface is composed of multiple boundary patches, which can be planar polygons
or non-uniform rational B-spline patches. The BREP geometry is said to be ‘water tight’ if each
boundary curve (of a patch) is shared, and shared only by two patches. To generate a computational
grid with almost any current grid generators, a ‘water-tight’ (topologically closed) geometry has to
be defined first. Sometimes, ‘dirty geometries’ are caused by cracks, overlaps or invalid manifolds
in the geometry [29]. There are several methods that can be used to repair dirty geometries before
grid generation (e.g. see [30–38]). In the present study it is assumed that the input geometry is
water tight.

Most CAD software on the market can generate stereolithography (STL) files, which are gener-
ally used for prototyping, visualization and grid generation purposes. These files represent a
triangulation boundary of the solid. Algorithms to generate STL triangulation are highly efficient
and surface approximations are very precise [39]. The transfer of STL files from one system
to another is exact [29]. An STL file is composed of a list of triangle facets. These facets are
composed of the coordinates of three vertices of the triangle, in addition to the coordinates of the
normal oriented to the exterior of the solid. This triangulation is built to minimize a geometric
approximation criterion that is related to the real boundary of the solid. CAD softwares usually
export the STL file in the binary or ASCII format. Figure 1 shows the content of a sample ASCII
STL file.

The CARTGEN code reads input geometry in STL format (either ASCII or binary). Note that
other surface triangulation formats can be used in the presented method. The input geometry

Figure 1. Example of an ASCII STL file.
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can be composed from multiple non-intersecting objects (STLs). With some additional efforts,
handling multiple objects that intersect with each other is possible in the presented method too
(see Section 3.3).

3. CARTESIAN GRID GENERATION

At the beginning of this section, we introduce some definitions that are used through this paper:

• Voxel: each element of a uniform Cartesian grid is called a voxel.
• COV: center of voxel, geometrical center of voxel.
• IV: interior (internal) voxel, a voxel that is located inside the solid object.
• EV: exterior (external) voxel, a voxel that is located outside the solid object.
• BV: boundary voxel, a voxel that is intersected with the solid object’s boundary.
• IBV: interior (internal) BV, a BV whose center is located on the surface or inside the solid
object.

• EBV: exterior (external) BV, a BV whose center is located outside the solid object.

3.1. 3D uniform Cartesian grid generation

Consider the STL representation of a 3D solid object (CAD representation of 3D geometry). To
generate a 3D Cartesian grid, at the first step, the spatial domain (the environmental box of the
solid object) is determined such that the solid object does not touch its boundaries. At the next
step, the spatial domain is filled with a 3D array of voxels based on user-defined spatial step sizes.
The spatial step sizes are defined as �x , �y and �z along the x, y and z directions, respectively.‡
The size of the spatial domain should be large enough such that there is at least one row of voxels
outside the solid object. In the Cartesian grid approach, each voxel is determined by its i , j and
k indexes in the mentioned 3D array and we have

i=1,2, . . . , imax

j =1,2, . . . , jmax

k=1,2, . . . ,kmax

where imax, jmax and kmax are maximum number of voxels in the x , y and z directions, respectively.
The x, y and z coordinates of each voxel (center of voxel) are determined by

x=(i−0.5)�x

y=( j−0.5)�y

z=(k−0.5)�z

‡The variation of step size along each spatial direction is also possible.
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Figure 2. Schematic illustration of simplified 3D grid generation.

The task of Cartesian grid generation is voxel coloring, i.e. setting black color to IVs or IBVs
and white color to EVs or EBVs. Since in the present study the type of voxel is determined based
on the position of its center, we only work with the COVs (one point per voxel). This permits us to
convert the 3D grid generation to a sequence of plane-by-plane 2D grid generation and similarly to
convert a planar 2D grid generation to a sequence of line-by-line 1D grid generation as illustrated
in Figure 2.

As illustrated in Figure 2, the voxel coloring procedure in the present study contains sweeping
along the z direction and voxel coloring, plane-by-plane (the horizontal xy-plane passing from
COVs). The z-coordinate of these planes are

zmin+0.5�z, zmin+1.5�z, . . . , zmax−1.5�z, zmax−0.5�z

where zmin and zmax are the minimum and maximum bounds of z-coordinates, respectively. To
color voxels on a horizontal plane, at the first step, the intersection of the solid object with the plane
should be extracted. Since the solid object is a closed 3D surface (or surfaces), its intersection
with a horizontal plane is a closed 2D curve (or multiple closed 2D curves), and as the solid object
is represented with its surface triangulation (STL format) in this study, the result of intersection is
a (or multiple) piecewise linear closed 2D curve(s). Note that for complex geometries (or multi-
component geometries), we may have more than one closed curve but for convenience, without
losing generality, we assume only one curve. Since a triangle intersects with a plane when it has
one vertex above the plane and one vertex below the plane, to improve performance, we sort the
triangle list based on the maximum z-coordinates and start the intersection procedure from the
first triangle that has one vertex above the intersecting plane.

After extraction of the mentioned closed 2D curve on each horizontal plane, we have a 2D array
of points (COVs) and a closed curve on the desired plane. The task of planar voxel coloring is
to determine the surface and interior points in relation to the 2D closed curve and blacking their
corresponding voxels. To simplify this stage, we convert the planar voxel coloring to a sequence
of linear voxel coloring. For this purpose, we sweep along the y direction (on the desired plane)
and intersect y-constant lines with the extracted 2D closed curve. The y-coordinates of these
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Figure 3. Intersection of a straight line with a closed 2D curve that results in an even number of points.

lines are

ymin+0.5�y, ymin+1.5�y, . . . , ymax−1.5�y, ymax−0.5�y

where ymin and ymax are the minimum and maximum bounds of y-coordinates, respectively.
Intersection of each y-constant line with a closed 2D curve results in some points having different
x-coordinates (and the same y- and z-coordinates). To improve the performance of this stage,
we sort the line segments of the closed 2D curve based on their y-coordinates and start the
intersection procedure from the first line segment that has one vertex with a larger y-coordinate
than the y-coordinate of the intersecting line.

For linear voxel coloring purpose, the resulting points (result of intersection) should be sorted
based on their x-coordinates. Then the index of the corresponding voxel of each point should be
determined based on the following relation (these voxels are BVs as defined previously):

i= INT(xp/�x)+1, j = INT(yp/�y)+1, k= INT(z p/�z)+1

where xp, yp and z p are coordinates of each point. Note that z p is equal to the z-coordinate of
the intersecting horizontal plane, yp is equal to the y-coordinate of the intersecting y-constant line
and xp is computed from intersection of the y-constant line with the closed 2D curve. Since these
points are the result of intersecting a closed 2D curve with a straight line, the number of points is
an even number (see Figure 3).

The resulting BVs are colored based on their type (black for IBVs and white for EBVs). To
color the other voxels (along a prescribed straight line), we sweep along the x direction and set
black color for those voxels that are located between each of the two consecutive BVs as illustrated
in Figure 4.

Sometimes, we encounter overlapped points during linear voxel coloring. In these cases two
or more than two points have the same position. This problem has two sources. The first source
is related to a repeated line segment in the closed 2D curve. The repeated line segment occurs
when a horizontal plane passes through a shared edge of two triangles (see Figure 5(a)). In this
manner, the shared edge appears two times in the closed 2D curve. These repeated line segments
lead to repeated points after intersection of a y-constant line with the closed 2D curve. The other
source of repeated points is related to passing a y-constant line from the intersection point of two
line segments (see Figure 5(b)). Removing repeated points from the sorted point list in each linear
voxel coloring stage is a simple and efficient solution to this problem.
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Figure 4. A schematic illustration of linear voxel coloring.

Figure 5. Production of a repeated line segment by passing a horizontal plane from the shared edge of
two triangles (a) and production of a repeated point by passing an intersecting line from the intersection

point of two line segments (b).

It is clear that the variation of spatial step sizes along each spatial direction can be easily
included in the presented method. For this purpose, it is sufficient to replace �x , �y and �z with
variable step sizes �xi , �y j and �zk , respectively.

In the present study (CARTGEN code), 1 bit of memory is used to store each voxel (to save
memory). In this manner, every 8 voxels are stored in an 8-bit integer (INTEGER*1 in FORTRAN).
In this manner, each bit has value 1 when its corresponding voxel has black color and 0 in the
other case. Therefore, every two xy-planes are stored in an array with dimension imax/2× jmax/2
(for more details see the CARTGEN code).

3.2. Related computational geometry procedure

In this subsection, we describe all of the computational geometry procedures that are used in the
current study.

The first computational operation is intersection of a horizontal plane with a triangle which
makes a line segment. Since a horizontal triangle does not intersect with a horizontal plane,
the horizontal triangles are removed from the triangles list before grid generation. A triangle is
considered horizontal if the z component of its normal is smaller than a priori defined threshold
(1.e−10 in the present study). The equation of the desired line segment results by putting the
z-coordinate of the horizontal plane in the equation of the triangle’s plane. To compute two
endpoints of the line segment, we calculate the intersection of the line segment with three lines
that pass from each of the two vertexes of the triangle. If one of these lines is parallel with the
horizontal plane, the result of intersections would be our desired points (two endpoints). In the
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other case, the result of intersections would be three points. One of these points is not located on
the triangle’s edge. To determine this point, the distance of each resulting point is computed from
two vertexes of the triangle (those vertexes that are used for the computation of the intersection
point). If summation of these distances is equal to the triangle’s edge length, then the point is
located on the triangle edge.

The second computational procedure is intersection of a line segment with a y-constant line
which makes a point. For this purpose, it is sufficient to put the y-coordinate of the y-constant
line in the equation of the line segment. Note that before intersection the possibility of intersection
should be studied.

3.3. Multi-component geometries

The algorithm described above works naturally for non-intersecting multi-component geometries.
For this purpose, it is sufficient to load each component as a separate STL file and add its
triangles to the end of the triangles list (the CARTGEN code supports this feature). When we
have intersecting components, there are generally two solutions. A formal solution is to use the
components intersection algorithm (as discussed in [28]) to generate the result of intersection as a
new triangulation. The second solution, which is easy to implement in the context of the presented
algorithm, is to generate grids separately for each component, and then combine the resulting grids
by a Boolean rule to create the final grid. Note that all components should have the same spatial
domain and step sizes. In this manner, each voxel of the final desired grid has the black color when
at least one of its corresponding voxels in the separately generated grids (for each component) has
the black color.

3.4. Octree grid generation

The above-described algorithm is sufficient to generate the uniform Cartesian grids. For the gener-
ation of octree-refined grids, some additional procedure should be included.

Unlike the traditional octree grid generators that use an up-to-down approach to generate octree
grids, in the present study we use a down-to-up approach. In the up-to-down approach, the grid
generation is started from the coarsest level and is continued by adaptive grid refinement based on
the geometry curvature toward the finest level. In the down-to-up approach, the finest grid level is
generated first and the coarser levels are generated directly from the finest level. The main benefits
of the down-to-up approach are high efficiency, ease of implementation and flexibility to generate
various kinds of refined grids (e.g. anisotropic and non-graded refinements). The main drawback
of down-to-up approach is high memory usage due to storage of the all grid levels. In Section 3.6,
the memory problem of the presented method is studied in detail and to tackle it, an effective
solution is presented.

In the presented method, we construct coarser grid levels hierarchically from the generated finest
level. For convenience, we consider the isotropic double coarsening method in which the number
of voxels along each spatial direction of the next coarser level (started from the finest level) is
one-half its corresponding finer level. Therefore, each of the 8 voxels of the finer level, which are
called child voxels, fall within one voxel of the coarser level, which is called parent voxel.

For voxel coloring of a coarser level, we loop on its corresponding voxels and color each
(parent) voxel when its corresponding 8 voxels (child voxels) in the finer level have the same color
(black color when its child is black and vice versa). When a parent voxel is colored in the coarser
level, its corresponding child voxels are removed from the finer level. The other coarser levels are
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generated hierarchically in the same manner. Finally, the desired octree data structure is extracted
from these hierarchical grid levels.

As discussed previously, we use a 1-byte (8 bits) integer to store each of the 8 voxels. This issue
helps to increase efficiency of the grid coarsening procedure. When all 8 bits of a 1-byte signed
integer have value 1, the value of this integer should be −1 (note that for an unsigned integer
this value is 255; in our implementation, i.e. CARTGEN, a signed integer is used) and in the other
case when all 8 bits have a value of zero, the value of this integer should be zero. Therefore,
for voxel coloring of a coarser level from its corresponding finer level, it is sufficient to check
each 1-byte integer (corresponding to every 8 voxels of the finer level) for values 0 and −1 (for
more detail see the CARTGEN code). The generated octree from this method is not essentially
graded (in a graded octree, every two neighbor voxels could have at maximum one octree level
difference). Since some of the finite volume octree Cartesian solvers only use the graded octrees,
a post-processing procedure should be performed on the resulted octree to ensure this criterion.

Using the down-to-up grid coarsening approach in the presented method, all of the grid levels are
directly accessible; hence, other coarsening strategies such as anisotropic coarsening or non-graded
coarsening can easily be included.

3.5. Geometric requirements of embedded boundary Cartesian finite volume solvers

In this section we present a simple and easy to implement method to extract geometric information
required for embedded boundary Cartesian grid finite volume solvers.

Implementation of embedded boundary cell-centered FVMs are usually performed based on the
volume-of-fluid approach (in this study each voxel represents a control volume). In this approach,
we need to know the occupied volume fraction and the wetted surface fraction of boundary voxels.
The occupied volume fraction of each boundary voxel is defined as the ratio of the volume occupied
by the solid object to the total volume of the voxel. The wetted surface fraction for each face of
a boundary voxel is defined as the ratio of area of the face wetted by the solid object to the total
area of face [20, 21, 26].

To extract this information, we use the efficiency feature of the presented method and after a
primary grid generation, we generate a secondary grid with smaller grid sizes �x2, �y2 and �z2,

Figure 6. Division of an interfacial voxel into 16 baby voxels to extract the embedded boundary information
required for 2D finite volume solvers.
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where �x2=�x/2n , �y2=�y/2n , �z2=�z/2n and n is a positive integer that controls the accuracy
of method. In this manner, each primary voxel is divided into 2n×2n×2n smaller voxels. We call
these small voxels the baby voxels of the corresponding primary voxel. Then, the occupied volume
fraction of each primary voxel is computed by counting the number of its black baby voxels and
in the same manner, the wetted area fraction of each face is computed by counting the number
of black baby voxels in touch with the face. Figure 6 schematically shows this procedure in two
dimensions.

Since the presented method is a z-buffering algorithm (layer-by-layer grid generator), it is needed
to generate only n layers of the baby voxels for each primary voxel layer. Hence, the additional
memory requirement is 23n−3×imax× jmax bytes (consider 1 bit of memory per baby voxel).

It is clear that the generated embedded boundary information by the presented method is not
essentially exact. However, in the numerical simulation, it is not essential to have the exact
embedded boundary information. As stated in [40, 41] for accessing a second-order embedded
boundary finite volume solver it is sufficient to have the embedded boundary information with
a second order accuracy with respect to the spatial step size. Since the presented method uses
the central approach to determine in/out voxels, it is expected that any geometrical information
generated by the presented method has a second-order accuracy. Therefore, the presented approach
to generate embedded boundary information is consistent with second-order finite volume solvers
when n�1. It is worth noting that the absolute level of error in this approximation is not essentially
same as the situation when the exact embedded boundary information is used; hence this error
might be 4–8 times larger while we have still a second-order slope [42].

For efficient implementation of this method, we use n=2 (64 baby-voxels per each primary
voxel) and assign 8-byte data (64 bits) for each primary voxel (the size of additional working array
is 8×imax× jmax bytes). It should be noted that the storage of the produced embedded boundary
data does not need floating point data type (4 byte), but needs only one integer (1 byte) per
embedded boundary information. As an example, the stored value of the volume fraction is the
number of black baby voxels (varies from 0 to 64); it is obvious that the real value of the volume
fraction can be computed by multiplication of this number with factor �x�y�z/64.

3.6. Memory reduction

The main drawback of the presented method is the high memory usage that could limit its
application for large-scale problems. In this section, the memory requirement of the presented
method is studied and an effective solution for the memory problem is presented.

The consumed memory of the presented method is composed from two types of the allocated
memory. The first type is the working arrays, contains a list of triangles, line segments, etc. The
presented method takes about 70 bytes memory per triangle for this purpose. As an example, for
a complex input geometry with about 1 million triangles the required memory for this purpose is
about 70 mega bytes (MB).

The consumed memory to store the generated grid (one bit per voxel) is the other type of the
allocated memory. In the octree grid case, each octree level should also be stored. As an example,
for an 11-level refined octree (20483 grids on the finest level), the total memory consumption is
about 1.23 giga bytes (GB). Therefore, the presented method does not have the memory problem
up to 11-level refinement on a personal computer with about 1.5–2GB physical memory. It is
worth noting that in practical applications a 12-level grid falls in the category of very large-
scale problems. For example in [28], generated octree grids over complicated multi-component
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Figure 7. Schematic of voxelization compression in 2D (shaded voxels represent the black voxels).

geometries did not exceed 11 levels. For the heaviest case presented in [28], the grid generation
is started from a 6×6×6 coarse level and continued to 9-level refinement. The crude version of
the presented method cannot handle this case on traditional personal computers.

To solve the memory problem of the presented method, a simple data compression algorithm
is used. This method is similar to the compressed sparse row (CSR) format that is used in linear
algebra to store sparse matrices (see [43] for more details about CSR). In this method, instead of
saving the color of each voxel, we only store the index of interfacial voxels. Hence, the required
memory is decreased about one order of magnitude. In this way, during each sweep along a
y-constant line, i-index of the interfacial voxels (i.e. IBV voxel) is stored in an additional array.
We call this array the IA array. Each item of this array is a 2-byte integer number (INTEGER*2
in FORTRAN). Another integer array, the JA array, is also essential to store the pointers to the
beginning of each row in the IA array. The length of this array is jmax∗kmax+1 and its items
are 4-byte integers (INTEGER*4 in FORTRAN). In this manner, for accessing the i-index of
voxels which are located on j = jc line, it is sufficient to loop on the IA array from item JA( jc) to
JA( jc+1)−1. It should be noted that voxels which are located between each of the two consecutive
black voxels are taken as black voxels (we do not store their indexes). In this method for a
y-constant line ( j= jc) that has no black voxel JA( jc) is taken to be equal to JA( jc+1). Figure 7
schematically shows this data compression technique in two dimensions. Note that in this method,
after storing each xy-plane, the next xy-plane is stored at the end of the previously stored data.

As discussed in Section 3.1, CARTGEN uses 1 bit of memory to store each voxel and hence each
of the two consecutive xy-planes are mapped to an (INTEGER*1) array with one-eight size of the
original voxelization. We call this storage format the primary compressed voxelization. To reduce
memory usage and to decrease number of operations during data compression, we compress primary
compressed voxelization instead of the direct voxelization in our data compression implementation.
Since items of this array are not essentially 0 or 1, an additional integer (INTEGER*1) array,
which is called AA, is used to store the values of boundary voxels of the primary compressed
voxelization. To increase efficiency and ease of implementation, CARTGEN uses a working buffer
array to store one plane of the primary compressed voxelization. After filling of this working
buffer, CARTGEN compresses its content (for more details see the CARTGEN code).

3.7. Limitations

Although generation of Cartesian grids is automatically and efficiently possible over complex
geometries, Cartesian grids have some intrinsic limitations that could limit their application. Since
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Cartesian grids are non-body fitted, they have fine features of geometry, e.g. sharp corners and
ridges are rounded or missed during grid generation. The only solution to this problem is increasing
grid resolution near sharp features (high curvature surfaces).

As stated in Section 2, the input geometry of the presented method should be a water-tight surface
triangulation. Therefore, non-manifold and dirty geometries (e.g. have crack, hole, self-intersection
and degenerated feature) should be fixed before grid generation.

3.8. Software availability

The FORTRAN 90 implementation of the presented method is freely available under the terms of the
GNU Lesser GPL§ from URL: http://mehr.sharif.ir/∼tav/cartgen.htm and http://sourceforge.net/
projects/cartgen/.

4. RESULTS AND DISCUSSION

In this section, demonstrative examples are presented to show the capability of the proposed
method. All computations were performed on a personal computer with AMD 2.4GHz central
processing unit (CPU) and 2GB RAM.

Figure 8 shows the 3D configuration of test cases 1–6 which are used in the present study. The
number of triangles in STL files related to test cases 1–6 are 12094,8176,2668,41850,355870
and 871 414, respectively. For each test case, the Cartesian grid was generated with various grid
resolutions.

Figures 9–11 show results of grid generation (uniform and octree) for test cases 1–6. The
number of black voxels related to results of test case 1 is 1134,12712,126365,1242,8116 and

Figure 8. 3D configuration of test cases 1–6 used in the present study.

§http://www.gnu.org/copyleft/gpl.html.
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Figure 9. Cartesian grid generation results. Test case 1: (a) 25×25×25 uniform grids; (b) 50×50×50
uniform grids; (c) 100×100×100 uniform grids; (d) 5-level octree; (e) 6-level octree; and (f) 7-level
octree. Test case 2: (g) 25×25×25 uniform grids; (h) 50×50×50 uniform grids; (i) 100×100×100

uniform grids; (j) 5-level octree; (k) 6-level octree; and (l) 7-level octree.

40 747 for Figure 9(a)–(f), respectively. The number of black voxels related to results of test case 2
is 1621,18931,192264,1413,9483 and 61 352 for Figure 9(g)–(l), respectively. The number of
black voxels related to results of test case 3 is 2025,23302,240049,1629,8670 and 46 275 for
Figure 10(a)–(f), respectively. The number of black voxels related to results of test case 4 is
1437,13091,123807,2882,20986 and 126 208 for Figure 10(g)–(l), respectively. The number of
black voxels related to results of test case 5 is 4301,41782,5854 and 39 703 for Figure 11(a)–(d),
respectively. The number of black voxels related to results of test case 6 is 12826,132715,21435
and 99 537 for Figure 11(e)–(h), respectively.
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Figure 10. Cartesian grid generation results. Test case 3: (a) 25×25×25 uniform grids; (b) 50×50×50
uniform grids; (c) 100×100×100 uniform grids; (d) 5-level octree; (e) 6-level octree; and (f) 7-level
octree. Test case 4: (g) 25×25×25 uniform grids; (h) 50×50×50 uniform grids; (i) 100×100×100

uniform grids; (j) 5-level octree; (k) 6-level octree; and (l) 7-level octree.

To study the accuracy of the embedded boundary information generated with the presented
method, a sphere with a sufficiently fine surface triangulation and known dimensions was considered
(diameter=200 units and 28 560 triangles). In this case, we only investigate the accuracy and
convergent of generated occupied volume fraction related to interfacial voxels (see Section 3.5).
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Figure 11. Cartesian grid generation results. Test case 5: (a) 50×50×15 uniform grids; (b) 100×100×30
uniform grids; (c) 7-level octree; and (d) 8-level octree. Test case 6: (e) 50×50×50 uniform grids;

(f) 100×100×100 uniform grids; (g) 7-level octree; and (h) 8-level octree.

Table I. Accuracy and convergence of the generated occupied volume fraction field.

Grid spacing n L1 error Order

20 0 2584 —
10 1 414 1.64
5 2 143 1.53
2.5 3 30.1 2.45
1.25 4 10.17 1.59
0.625 5 0.38 4.718
0.3125 6 0.01 5.25

Based on the divergence theorem, the exact volume of the surface triangulated sphere was calculated
and used as reference volume (it was equal to 4186400units3).

A primary uniform grid was generated with �x =�y =�z =20units. To extract the occupied
volume fraction information, baby voxels (for n=1,2,3,4,5 and 6) are generated and the occupied
volume fraction field is calculated based on the method discussed in Section 3.5. Then the approx-
imate volume of the sphere is computed based on the primary voxelization and generated occupied
volume fraction field. Table I shows the L1 error and convergence of the computed volume. It
shows that the approximated volume faction information has about second-order convergence to
the exact value.

To study performance of the presented method in terms of the CPU time and memory usage,
test cases 5 and 6 are considered and their octree grid representation is produced up to 13-level
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Table II. Computational performance in terms of the CPU time (s) and memory usage (MB).

Octree levels Finest level No. black voxels CPU time Working memory Grid memory

Case 5
8-level 2563 159865 1.12 25.29 0.31
9-level 5123 857499 3.73 25.36 1.48
10-level 10243 2760119 13.87 25.62 4.79
11-level 20483 11432070 61.0 26.67 19.90
12-level 40963 52503027 300.56 30.86 88.69
13-level 81923 218193823 1706.61 47.64 366.66

Case 6
8-level 2563 99537 1.92 61.89 0.20
9-level 5123 426596 5.31 61.96 0.83
10-level 10243 1782631 18.40 62.22 3.40
11-level 20483 7448039 76.27 63.27 14.01
12-level 40963 31594618 379.55 67.46 58.56
13-level 81923 135938537 2155.34 84.24 248.01

refinements (81923 grid on the finest level). Table II gives the result of this experiment. It is
obvious that the presented method is efficient from both the CPU time and memory usage view
points.

5. CONCLUSION

An efficient and easy to implement (uniform/octree) Cartesian grid generator is presented. It
supports the variation of grid size along each spatial direction as well as anisotropic and non-
graded refinements. The presented method could generate the required information for second-order
embedded boundary finite volume solvers. It benefits from a simple and effective data compression
method that allows one to store all the octree levels without considerable memory consumption.
The efficiency and robustness of the presented method are supported by illustrative examples.
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